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Abstract

Recent efforts in applying implicit networks to solve inverse problems in imaging have
achieved competitive or even better results when compared with feedforward networks. More-
over, they require less memory and can theoretically be of infinite depth. However, implicit
networks are not necessarily easy to train with their fixed point due to the presence and compu-
tation of a large linear system. This paper introduces Jacobian-free Backpropagation (JFB), a
fast and easy-to-implement scheme for backpropagation that circumvents such calculation and
is applicable to image deblurring tasks. Our results show that JFB is effective and gives com-
petitive results against fine-tuned optimization schemes, state-of-the-art (SOTA) feedforward
methods, and existing implicit networks.

1 Introduction

Inverse problems consist of recovering a signal (e.g. an image, a parameter of a PDE, etc.) from
indirect, noisy measurements. These problems arise in many applications such as medical imaging,
geophysical imaging, etc.
Traditional approaches for solving inverse problems use deep unrolling; this method utilizes a fixed
number of iterations which is usually chosen heuristically and can often lead to inaccuracies [4, 8].
Moreover, they are challenging to train due to memory constraints, as the activations of each layer
are saved for backpropagation. Another proposed method [11] uses denoising convolutional neural
networks (DnCNNs) with batch normalization and residual learning to learn how to remove the
clean underlying image.
Consequently, deep equilibrium models (DEQs) were proposed [1]. These models substitute tradi-
tional feed-forward networks with implicit networks. Implicit networks backpropagate through a
fixed point of the weight-tying layers, which allows them to maintain constant memory costs. Al-
though infinite-depth networks have fixed memory costs, they are very expensive to train. This is
because backpropagating through implicit networks requires the computation of a Jacobian-based
linear system for every gradient evaluation [8]. Recently, a Jacobian-Free Backpropagation (JFB)
approach was introduced to avoid solving the linear system by estimating the gradient [3].
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The theory of JFB allows us to replace the Jacobian matrix with the identity under certain con-
ditions. By doing so, we approximate the gradient instead of directly inverting the Jacobian. JFB
not only maintains a fixed memory cost, but also avoids a substantial computational cost while
ensuring a descent direction. JFB has performed well on image classification tasks [3]. In this
paper, we investigate its effectiveness in training implicit networks for inverse problems arising in
image deblurring 1.

2 Mathematical Background

2.1 Inverse Problem Setup

Consider the case where we have N noisy blurred images {di}Ni=1 (di ∈ Rm) that we refer to as
measurements. The underlying original images, denoted as {xi}Ni=1 (xi ∈ Rn), are hidden from the
experimenter(s).
We use the following model [8]:

d = Ax+ ε (1)

where A is a mapping from signal space Rn of original images to measurement space Rm and
ε ∈ Rm is a noise term that models measurement errors.

2.2 Traditional Optimization with Inverse Problems

A natural idea is to apply A−1 to Eq. 1 and obtain x∗ = A−1(d− ε) when A is invertible. This can
amplify the noise and result in really bad reconstructions. Therefore, we solve for the true image
x∗ by formulating it as a regularized optimization problem that minimizes the difference between
the reconstructed image and observed image:

x∗ = argmin
x∈Rn

1

2
||Ax− d||2L2 + λR(x) (2)

where R(x) is a regularizer chosen based on prior knowledge of the data, and λ > 0 is a tunable
parameter. We can solve (2) by applying the gradient descent algorithm, with a common choice
of R(x) = 1

2 ||x||
2
L2 . However, from our numerical experiments, the results are not ideal (low SSIM

values for reconstructed images), which led to the exploration of implicit networks.

2.3 Implicit Network and Challenges

Implicit networks [2] are newly proposed models that also leverage the dataset {(di, xi)}Ni=1 and can
represent a wide range of feedforward models. The idea is to find a fixed point for their weight-tying
layers and map it to the inference space (output). We formulate our implicit network as follows:

[Equilibrium equation] TΘ(x) = x
[Prediction equation] x∗(d) = x

(3)

The iteration to find the fixed point reads:

xk+1
i = xki − η

(
∇x||Axki − di||2L2 + SΘ(x

k
i )
)

︸ ︷︷ ︸
:=TΘ(xk

i )

(4)

1Access the GitHub repository at https://github.com/lliu58b/Jacobian-free-Backprop-Implicit-Networks
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where η > 0 is step size, K is the number of iterations (layers) in our neural network NΘ(·), and
SΘ(·) is a trainable network containing all the weights of NΘ(·). Note that the equilibrium equation
in (3) is satisfied as K →∞ when TΘ(·) is a contraction.
Given a noisy measurement d, we find its fixed point x∗, and define NΘ(d) := x∗.
To train the weights Θ, we perform implicit differentiation on the equilibrium equation in (3)

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

rearrange terms
=⇒

(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ

and substitute dx∗

dΘ into the gradient descent scheme after setting up a loss function ℓ:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
(5)

where α > 0 is the learning rate and we call (I − dTΘ(x∗)
dx∗ ) the Jacobian. This update rule is costly

due to the need of inverting a Jacobian, which motivates the search for other ways to optimize the
backpropagation.

3 Related Works

3.1 Deep Unrolling for Inverse Problems

Deep Unrolling is used to unpack deep neural networks, whose black box nature hinders its devel-
opment in networks with very large training nets. In our setup, this method corresponds to Eq.
4, with K < +∞ being fixed. K is eventually a small number as a result of fine-tuning among
all stages, many handcrafted parameters, and limitations in time and space for both training and
testing.

3.2 Implicit Networks

Deep Equilibrium Models (DEQs), a type of implicit networks, were proposed in [1]. The advantage
of DEQ lies in that it requires less memory because it only has one layer of weights—it solves for
the fix-point and uses implicit differentiation to calculate the gradient for backpropagation. On the
other hand, SOTA deep feed-forward networks such as Deep Unrolling have memory issues since
they store intermediate values while iterating through each network layer.

3.3 Combining Implicit Networks with Classic Optimization

Three optimization techniques for implicit networks were introduced in [4] to combat the memory
limitations in deep unrolling methods:

i. Gradient descent. This is formulated in Eq. 4

ii. Proximal gradient descent. The model learns the optimization problem, i.e.,

xk+1 = SΘ(x
k − ηAT (Axk − d)), where η > 0 is the step size
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iii. Alternating directions methods of multipliers (ADMM). Here an auxiliary variable is introduced
and a fixed point is a long vector concatenated by both this auxiliary variable and the latent
variable of the image.

Numerical experiments of these methods performed on CelebA [7] and fastMRI datasets [10, 6]
have shown better benchmarks than deep unrolling methods [4].

4 Proposed Methodology

The convergence criterion of TΘ(·) in Eq. 4 (DE-GRAD) is discussed in more detail in [4], where
SΘ − I needs to be ϵ−Lipschitz to ensure that TΘ(·) is contraction with parameter γ ∈ [0, 1). We
propose using Jacobian-free Backpropagation (JFB), a backpropagation algorithm introduced in
[3], that has lower computational cost when updating Θ. The idea is to circumvent the Jacobian

calculation in (5) by replacing
(
I − dTΘ(x∗)

dx∗

)
with the identity I, leaving us with an approximation

of the true gradient:

pΘ =
dℓ

dx∗
∂TΘ(x

∗)

∂Θ
(6)

which is still a descending direction for the loss function ℓ with more constraints on TΘ [3]: (i) TΘ is
continuously differentiable with respect to Θ (ii) M := ∂TΘ

∂Θ has full column rank and the condition
number of MTM does not exceed 1

γ .
Even though JFB is not always performing the steepest descent, its gradient is much less costly to
calculate, which makes its overall cost lower while ensuring descending.

Note that
(
I − dTΘ(x∗)

dx∗

)−1
can be expanded using Neumann series:

(
I − dTΘ(x

∗)

dx∗

)−1

=

∞∑
j=0

(
dTΘ(x

∗)

dx∗

)j

(7)

where JFB only takes the first term of this expansion.
This greatly simplifies the implementation using PyTorch. We no longer need to calculate the
succeeding terms of Eq. 7 by hand and storing them.

Algorithm 1 Learning with JFB

Require: Implicit network NΘ(·) with weight-tying layers TΘ(·). Set learning rate α > 0.
for measurement-truth pair (d, x) in training set do
Find fixed point: x∗ = TΘ(x

∗; d) with torch.no grad()

Output: NΘ(d) = TΘ(x
∗)

Calculate loss: ℓ(x∗, x)

Update: Θ← Θ− α dℓ
dx∗

∂TΘ(x∗)
∂Θ

end for

5 Numerical Experiment

We mimic the format in [4] while implementing our JFB approach.
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• Data: We use a subset of size 10,000 of the CelebA dataset [7], which contains around 200,000
centered human faces with annotations. Among them, 8,000 images are used for training and
the rest are left for validating and testing purposes.

• Preprocessing: Each image is resized into 128 × 128 pixels with 3 channels (RGB). The
blurred images are generated using Gaussian blurring kernels of size 5 × 5 with variance 5.
The measurements are then crafted by adding white Gaussian noise with standard deviation
σ = 10−2 to the blurred images.

• Training: With the aforementioned data and preprocessing specifics, the training strictly
follows Algorithm 1, where TΘ(·) is the same as defined in Eq. 4. As part of TΘ, the
trainable network SΘ(·) is pretrained as also practiced in [4] to observe an improvement in
reconstruction.

• Visualization: We first visualize the average training loss per image over the number of
epochs in Fig. 1.
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Figure 1: Loss of the DE-GRAD model, trained with JFBs

We see that as the number of epochs increases, the loss decreases. However, we are still in the
process of fine tuning our parameters and expect to see even better results. We then visualize
examples from the DE-GRAD model we trained using JFB in Table 1. We use the same four
images for each row. Ground Truths are the images in CelebA dataset resized to 128 × 128
pixels. Noisy Blurred Images are generated by a 5 × 5 Gaussian kernel mentioned above.
Direct Inverse images are the results of applying the inverse of A, which is defined in Eq. 1.
Gradient Descent images are obtained by applying gradient descent using mean squared error
(MSE) as the loss function. We enforce early stopping so that the results are not corrupted.
JFB images are obtained using Noisy Blurred images as inputs with JFB-trained weights for
the DE-GRAD model.

• Comparison: We compare our results obtained from JFB with other state-of-the-art meth-
ods using total variation (TV), standard deep neural networks, and DEQ. The metrics we
use to assess the quality of reconstructed images are [5]: peak-signal-to-noise ratio (PSNR, a
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Ground Truth

Noisy Blurred Image

Direct Inverse

Gradient Descent

JFB

Table 1: Visualization of JFB

positive number, best at +∞) and structural similarity index measure (SSIM, also positive,
best at 1). The data in Table 2 are calculated on the testing dataset of size 2000.

Total Variation Plug-n-Play [9] Deep Equilibrium [4] JFB (Ours)

PSNR 26.79 29.77 32.43 26.88

SSIM 0.86 0.88 0.94 0.91

Table 2: Comparison across Models

Although we have not yet achieved results better than DEQs, which finds the true gradient
in a complicated manner in 5, we currently observe results that are competitive with other
techniques.

6 Conclusion

In this paper, we introduce Jacobian-free Backpropagation for implicit networks with applications
in recovering true images from their noisy blurred images. This technique proves to be effective in
that its rudimentary version recovers the images across the testing dataset well. Moreover, JFB
is competitive with other state-of-the-art methods whose hand-crafted parameters are fine-tuned
across all stages. We are currently training our model and tuning the hyperparameters to obtain
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better performance.
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